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Multi-scale classification of disease using structural MRI and wavelet transform
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Recently, multivariate analysis algorithms have become a popular tool to diagnose neurological diseases
based on neuroimaging data. Most studies, however, are biased for one specific scale, namely the scale
given by the spatial resolution (i.e. dimension) of the data. In the present study, we propose to use the
dual-tree complex wavelet transform to extract information on different spatial scales from structural MRI
data and show its relevance for disease classification. Based on the magnitude representation of the complex
wavelet coefficients calculated from the MR images, we identified a new class of features taking scale, direc-
tionality and potentially local information into account simultaneously. By using a linear support vector ma-
chine, these features were shown to discriminate significantly between spatially normalized MR images of 41
patients suffering from multiple sclerosis and 26 healthy controls. Interestingly, the decoding accuracies var-
ied strongly among the different scales and it turned out that scales containing low frequency information
were partly superior to scales containing high frequency information. Usually, this type of information is
neglected since most decoding studies use only the original scale of the data. In conclusion, our proposed
method has not only a high potential to assist in the diagnostic process of multiple sclerosis, but can be ap-
plied to other diseases or general decoding problems in structural or functional MRI.

© 2012 Elsevier Inc. All rights reserved.
Introduction

In recent years, multivariate analysis algorithms have become a
popular tool to diagnose neurological or psychiatric diseases based
on structural or functional MRI data (Ashburner and Klöppel, 2011;
Koutsouleris et al., 2009; Weygandt et al., 2011). The main challenge
here lies in the identification of features which provide most
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information about the particular disease (so-called ‘disease signa-
tures’). Features used in previous studies include local or global inten-
sity patterns (e.g. Klöppel et al., 2008b; Weygandt et al., 2011) as well
as geometric and surface-based features (Ecker et al., 2010; Yotter et
al., 2011). Most studies, however, are biased for specific scales, name-
ly the scale given by the spatial resolution of the data. Although it is
well known that the brain is hierarchically organized at different spa-
tial scales, ranging from individual neurons over cortical columns to
larger functional brain areas, the interplay between these spatial
scales has been little addressed. This limitation can partly be over-
come by using wavelets which provide a powerful means to analyze
the patterning of complex data on different scales (Sajda et al.,
2002). By this, wavelets allow “zooming in” at different spatial scales
and thus can be interpreted as a form of dimensionality reduction.

A wavelet is a small wave-like oscillation which is used to decom-
pose a signal with respect to scaled and translated versions of it. In
contrast to sine waves used as basis functions in the Fourier trans-
form, wavelets are of limited duration and therefore allow for locali-
zation in scale and space (Graps, 1995). By this, the wavelet
transform provides a natural adaptability to local signal properties
and non-stationary signals and thus can be used to analyze oriented
discontinuities (i.e. directionality) such as edges or surfaces in the
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data (Selesnick et al., 2005). Intuitively, the wavelet transform can be
seen as a way of decomposing the energy of a signal into a hierarchi-
cally organized set of scales (Bullmore et al., 2004). High frequency
components of the energy are represented by wavelet coefficients at
fine scales, whereas low frequency components can be found at
coarse scales. For an introduction into wavelets, please refer to
Daubechies (1992), Graps (1995) or Mallat (2008). The multi-
resolution property of the wavelet transform has been used in a vari-
ety of applications including functional MRI analysis (for a review see
Bullmore et al., 2004 or Van De Ville et al., 2006). In the medical con-
text, wavelets have been used as a way to discriminate between
healthy and pathological tissue (e.g. tumor cells or lesions; Antel et
al., 2003; Castellano et al., 2004; Zhang et al., 2008). However, these
studies were mostly based on 2-dimensional medical images and
did not focus on the importance of different spatial scales in dis-
tinguishing the tissue classes. Although multi-scale representations
of medical data promise a rich source of information for disease clas-
sification, we are not aware of any study investigating the impact of
different scales in decoding a disease.

One of the most common neurological diseases is multiple sclero-
sis (MS), which has only barely been investigated within the context
of multivariate analysis algorithms. MS is an autoimmune disease that
affects the central nervous system leading to inflammation, demye-
lination and neurodegeneration of brain tissue (Compston and
Coles, 2008). These alterations can cause a number of neurological
problems such as impaired function of the motor, somatosensory or
visual system. Since the introduction of the McDonald criteria
(McDonald et al., 2001), conventional MRI has become one of the
cornerstones in diagnosing MS. Radiologically, MS is mainly char-
acterized by three neurobiological markers: focal inflammatory le-
sions, neurodegeneration and subtle tissue alterations (Filippi and
Rocca, 2005). In contrast to lesions, regional neurodegeneration
and subtle tissue alterations usually remain undetected in conven-
tional MRI and are therefore termed normal-appearing brain tissue
(NABT; Filippi et al., 2004). In two recent studies of our group,
however, we have shown that local intensity patterns extracted
from NABT areas contain information about disease status
(Weygandt et al., 2011) and symptom severity (Hackmack et al.,
2012). These studies, however, were only based on the original
size of the MR volumes and therefore did not cover multi-scale
information.

Here, we use wavelets to investigate the significance of different
scales in discriminating between MR images of MS patients and
healthy controls. For the wavelet decomposition, we used the dual-
tree complex wavelet transform (Kingsbury, 2001; Selesnick et al.,
2005) which has the advantage of being approximately shift-
invariant and directionally selective. For 3-dimensional MR volumes,
28 different directions can be isolated. This means that on each
scale 28 orientation subbands (which are again 3-dimensional vol-
umes) are generated with each capturing one specific direction in
the data. Based on the magnitude of the complex wavelet coefficients
in each of the subbands, we used two strategies to investigate direc-
tionality at different scales. In the first analysis (‘global analysis of an-
isotropy’), we calculated for each subject the overall energy contained
in each of the subbands at one particular scale. This type of features
(‘global wavelet features’) captured scale and directionality informa-
tion, but disregarded local information by assessing the energy
throughout all brain locations. For each scale, it leads to one final di-
agnosis per subject. In contrast, in the second analysis (‘local analysis
of anisotropy’) we used the local pattern of directionality by including
the position within the subbands. These features (‘local wavelet fea-
tures’) allow for a precise mapping of relevant regions. Both analyses
were conducted for each scale separately. To classify between global
or local wavelet features of MS patients and healthy controls, we
used a linear support vector machine (Cortes and Vapnik, 1995;
Shawe-Taylor and Christianini, 2000).
Materials and methods

Patients

We reanalyzed the data of 41 patients (21 females and 20 males;
age, median (MD)=34, range 19–51) with clinically definite MS (re-
lapsing-remitting type; McDonald et al., 2001) and 26 age and gender
matched healthy controls (14 females, 12 males; age, MD=36.5,
range 23–57) already used in two previous studies of our group
(Hackmack et al., 2012; Weygandt et al., 2011). Disease duration was
on average 84.0 months (standard deviation (SD)=76.3). Mean T1 le-
sion load was 1872.2 mm3 (SD=6279.5; ‘black holes’) and T2 lesion
load was 5224.0 mm3 (SD=4117.8). The patients exhibited a mild to
moderate score on the Expanded Disability Status Scale (EDSS;
Kurtzke, 1983; MD=2, range 0–7). Additionally, patients were scored
on the Multiple Sclerosis Functional Composite (MSFC; Cutter et al.,
1999) and subtests 9-Hole Peg Test (9-HPT; mean (M)=19.4,
SD=3.3), Timed Walk Test (TWT; M=5.0, SD=1.7), and Paced Audi-
tory Serial Addition Test (PASAT; M=52.4, SD=9.1). Consent was
obtained according to the Declaration of Helsinki, and the studywas ap-
proved by the research ethics committee of the Charité—Uni-
versitätsmedizin Berlin. All subjects gave written informed consent.

Magnetic resonance imaging

Whole-brain high-resolution 3­dimensional T1­weighted images
(MPRAGE, TR 2110 ms, TE 4.38 ms, TI 1100 ms, flip angle 15°, resolu-
tion 1×1×1 mm) and T2­weighted fluid-attenuated inversion recov-
ery sequence images (TIRM, TR 10000 ms, TE 108 ms, TI 2500 ms,
resolution 1×1×3 mm, 44 contiguous axial slices) were acquired
using a 1.5 Tesla MRI (Magnetom Sonata, Siemens, Erlangen, Germa-
ny) with an 8-channel standard head coil. Lesion load for MPRAGE
and TIRM images was routinely measured using the MedX v.3.4.3
software package (Sensor Systems Inc., Sterling, VA, USA). Lesion
load of TIRM images was additionally measured using in-house soft-
ware (Weygandt et al., 2011).

Preprocessing

In accordance with our previous studies (Hackmack et al., 2012;
Weygandt et al., 2011), several preprocessing steps were performed.
First, a clinician used in-house software to conduct a lesion mapping
based on individual TIRM images. To be as conservative as possible,
the clinician was instructed to mark any hyperintensities visible in
the TIRM images and not only oval lesions as it is common in clinical
practice. Next, correction of field inhomogeneities, coregistration of
high-resolution MPRAGE and TIRM images, and spatial normalization
of these high-resolution images to the Montreal Neurological Insti-
tute (MNI) 152 brain template (voxel resolution: 2×2×2 mm)
were conducted using SPM5 (Wellcome Trust Centre for Neuroimag-
ing, Institute of Neurology, UCL, London, http://www.fil.ion.ucl.ac.uk/
spm). The spatial normalization parameters for the MPRAGE images
were estimated by the ‘unified segmentation approach’ (Ashburner
and Friston, 2005) and then applied to the co-registered TIRM images
as well as to individual lesion masks. Importantly, lesion areas identi-
fied by the clinician were excluded to avoid lesion-mediated artifacts
in the normalization routine. Finally, we obtained TIRM images from
all subjects as well as their individual lesion masks in MNI space (vol-
ume size: 79×95×69; voxel size: 2×2×2 mm).

For the wavelet transformation, the spatial normalized TIRM im-
ages were masked in three different ways (Fig. 1). First, all voxels
within the SPM standard brain mask that were not cerebrospinal
fluid (CSF) with a probability of more than 0.8 (based on SPM CSF
prior map) were included (referred to as brain mask). The rather con-
servative threshold of 0.8 was chosen to avoid misinterpretation of
tissue-free voxels as brain tissue. Based on the brain mask, we created
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Fig. 1. Overview of data processing. Raw MR volumes were normalized to the Montreal Neurological Institute (MNI) template and then masked by one of the three masks: brain
mask (BM), lesion mask (LES) or normal-appearing brain matter mask (NABT). For the resulting MR volumes, we calculated a 6-level dual-tree complex wavelet transform (dt-
CWT) resulting in 6 different scales and 28 oriented subbands (see Fig. 2) per scale, where each subband is again a 3-dimensional volume containing a different number of voxels
depending on scale. For illustration, we here show an example of a 3-level dt-CWT of a 2-dimensional MR image resulting in 3 scales and 6 subbands per scale. Each subband isolates
a specific direction in the image (±15°, ±45°, ±75°). Based on the magnitude representation of the wavelet coefficients, we extracted either global wavelet features (feature ex-
traction I) or local wavelet features (feature extraction II). For the global wavelet features, we calculated the log-energy for each subband within a particular scale (Figure: Scale I).
Please note that the log-energy is computed across all positions within a subband. We then conducted a classification analysis (‘global analysis of anisotropy’) for each scale sep-
arately to discriminate between the features of MS patients (MS) and healthy controls (HC). For the local wavelet features, we extracted the magnitude at one particular location
(i.e. voxel position) across all subbands within one scale. Thus, the features depend not only on the scale but also on the position within the subband and therefore represent local
directional information. The features were then used as above by a classification analysis (‘local analysis of anisotropy’) to separate between the two groups. Importantly, the clas-
sification analysis was not only conducted separately for each scale, but also for each voxel position.
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two further masks: (1) lesion mask and (2) normal-appearing brain
matter (NABT) mask. Whereas the lesion mask includes only that
matter where at least one person had a lesion, the NABT mask in-
cludes only that matter where none of the MS patients had a lesion.
Please note that within the lesion mask only 6.83% of voxels across
all subjects were actually lesioned. The lesion and NABT mask togeth-
er add up to the brain mask. Only image intensity values within the
mask (brain, lesion or NABT) were used for calculating the wavelet
coefficients, all other values were set to zero. Since the masks were
equal for MS patients and healthy controls, boundary effects intro-
duced in the decomposition due to prior masking are equal for both
groups and are therefore not relevant for classification. In Supple-
mentary Table 1, results without prior masking are depicted, which
show significant results for scales I, III and all scales together. To ac-
count for different overall intensity levels the images were standard-
ized within subjects by subtracting the mean and dividing by the
standard deviation of normal-appearing (i.e. non-lesional) brain tis-
sue. This was done to ensure that a higher lesion load did not intro-
duce any biases into the standardization. Since the wavelet
implementation requires the image dimensions to be a power of 2,
we filled the MR volumes with zeros until the next power of 2 is
achieved (new volume size: 128×128×128).

To rule out that the results obtained for the discrimination of MS
patients and healthy controls relied on effects related to MS-related
preprocessing steps (i.e. lesion masking), we repeated the global
and local analyses of anisotropy for an MRI data set of 20 Alzheimer's
patients and 20 healthy controls obtained from the Alzheimer's Dis-
ease Neuroimaging Initiative (ADNI) data base (see Supplementary
material and Supplementary Tables 7–8).
Wavelet decomposition

The discrete wavelet transform (DWT; Burrus et al., 1997;
Daubechies, 1992; Graps, 1995; Mallat, 1989, 2008) is a powerful
tool to handle signals at different scales. Within the DWT, a signal is
broken up into shifted and scaled versions of one original ‘mother-
wavelet’. For 2- or 3-dimensional signals, this mother-wavelet is a
spatial pattern and is usually required to have compact support and
vanishing higher moments (Daubechies, 1988, 1992; Meyer, 1987).
As a consequence of limited duration, wavelets allow for localization
in scale (i.e. frequency) and space and can therefore be used to ana-
lyze local, spatial transients in the data such as edges or surfaces
(Bullmore et al., 2004; Selesnick et al., 2005). This means that wave-
lets allow capturing information at different spatial scales while
maintaining locality. By this, the wavelet transform provides a huge
advantage over the Fourier transform, which is only localized in fre-
quency and thus cannot be used to analyze local patterns. Intuitively,
the DWT allows for zooming in at particular scales of interest. Since
the spatial resolution of the signal is reduced in each decomposition
step, the wavelet transform is also a form of dimensionality reduction.
In this respect, the DWT can be viewed as a way to decompose the en-
ergy of a signal over a hierarchy of scales distributed to different di-
rections in the data (Bullmore et al., 2004). Computationally, the
DWT can be implemented via a filter bank (Burrus et al., 1997),
which provides a fast way to calculate the wavelet coefficients by
using an array of high and low pass filters.

The dual-tree complex wavelet transform (dt-CWT; Kingsbury,
2001; Selesnick et al., 2005; MATLAB implementation can be found
here: http://taco.poly.edu/WaveletSoftware/) is an improvement of
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the DWT, which calculates the complex transform of a signal using
two real DWTs. The dt-CWT can then be represented by the matrix
F=[Fh Fg], where the matrices Fh and Fg represent the real transforms.
The complex wavelet coefficients of a real signal x are then given by
Fh ∙x+i ∙Fg ∙x. Thus, the first DWT gives the real part of the transform,
and the second DWT the imaginary part. Both DWTs are implemented
via a filter bank, but use different sets of filters. However, the filters
are jointly designed to ensure that the overall transform is approxi-
mately analytic (Selesnick et al., 2005). By this, the dt-CWT provides
two main advantages over the standard DWT: approximate shift-
invariance and high direction selectivity in two and higher dimensions.

Shift-invariance means that the wavelet coefficients do not change
when the signal is shifted in the time or space domain. Approximate
shift-invariance, however, is realized at the cost of a redundancy of
2d wavelet coefficients (d dimension; i.e. 8-times as many coefficients
are needed to represent a 3-dimensional MR image in the dual-tree
wavelet domain).

Direction selectivity allows for an isolation of different directions
in the signal, for example edges in images or surfaces in volumes.
For a 2-dimensional image, 6 different directions can be isolated
(±15°, ±45°, ±75°; Fig. 1), whereas for a 3-dimensional volume,
28 different orientations can be segregated (Fig. 2). Importantly,
these orientations are present at each spatial scale. Please note that
the standard DWT can only distinguish between horizontal and verti-
cal directions, but not between diagonal directions (so-called ‘check-
erboard artifact’). In Supplementary Fig. 1, Fourier transform,
Fig. 2. 3-dimensional isosurfaces. The real part of the complex isosurfaces given by the dual
responds to a specific orientation. These illustrations were made with the same software w
WaveletSoftware/).
standard DWT and dt-CWT are compared with respect to their effect
on a 2-dimensional image.

For each subject, we calculated a 6-level dt-CWT based on the
preprocessed 3-dimensional MR volumes resulting in 6 different
scales (from scales I to VI, VI describing the coarsest) and 28 oriented
subbands per scale. These subbands are again 3-dimensional vol-
umes, which contain a certain number of voxels depending on the
scale. The number of voxels refers to the spatial resolution of the par-
ticular scale. In our case, the 28 orientation subbands at the first scale
have a resolution of 64×64×64, the orientation subbands at the sec-
ond scale have a resolution of 32×32×32 and so on. Each voxel with-
in a subband is described by a complex wavelet coefficient which is
provided by the dt-CWT. Here, we use the magnitude representation
of the complex wavelet coefficients since we are interested in direc-
tionality at different scales and the relative magnitude can be seen
as a marker of directionality: a larger magnitude indicates the pres-
ence of structures of a particular scale and orientation in the data
(e.g. edges or surfaces). Consequently, the magnitude of each voxel
depends on the scale, the orientation and the position of the voxel
within the subband. Please note that the voxel size differs between
the different spatial scales and thus the term voxel is not restricted
to the voxels in the raw MRI data but is generally meant for ‘volume
element’ (where the size is determined by the scale).

For decomposition, we used the Kingsbury Q-filters which are an
improved version of the original dt-CWT filters that have better orthog-
onality and symmetry properties (Kingsbury, 2000). As mentioned
-tree complex wavelet transform is shown for each subband, where each subband cor-
e used for calculating the dual-tree complex wavelet transform (http://taco.poly.edu/
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Fig. 3. Illustration of pattern-based classification analysis. In the training phase, global
or local wavelet features were extracted from the individual wavelet decompositions of
normalized TIRM images. A linear support vector machine (SVM) is then used to clas-
sify between MS patients and healthy controls based on the features from the training
data set. In the testing phase, global or local wavelet features of a new ‘unseen’ subject
are represented and the SVM is used to predict group membership (MS or healthy con-
trol) for this person. For validation, we performed a leave-one-out cross-validation
over all subjects, which means that each subject is once the test subject. For the global
wavelet features, the whole procedure is repeated for each scale. For the local wavelet
features, the procedure is additionally repeated for each voxel position within a partic-
ular scale.
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above, the dt-CWTwas calculated three times for each subject, once for
each of the three masks (i.e. brain mask, lesion mask and NABT mask),
so that either intensity values within all brain matter or lesion matter
or NABT contributed to the wavelet coefficients.

Based on the magnitude representation and for each scale sepa-
rately, we used two strategies to extract features from the wavelet
decomposition that are explained in detail in the following sections.
The first strategy was to extract patterns of global directionality con-
tained in the individual wavelet decompositions (‘global wavelet fea-
tures’), whereas the second strategy was to extract patterns of local
directionality (‘local wavelet features’). Whereas the global features
were defined as the total variance in each of the subbands at one par-
ticular scale and thus capture scale and directionality information, the
local features additionally captured local information by including the
position within the subbands. These features were then used inde-
pendently to classify between MS patients and healthy controls. The
analysis based on the global wavelet features is called ‘global analysis
of anisotropy’, whereas the analysis based on the local wavelet fea-
tures is called ‘local analysis of anisotropy’.

Anisotropy generally refers to the property of being directionally
dependent, as opposed to isotropy, which means uniformity in all di-
rections. Here, anisotropy deals with the individual pattern of global
or local directionality, i.e. how large variance or magnitude measures
are in certain directions. The idea here is to find group-specific differ-
ences in directionality at different scales. For example, patients may
have larger variances in more horizontal directions at one particular
scale and may have reduced variances at another scale, whereas
healthy subjects show a vice-versa relationship with respect to verti-
cal directions.

Global analysis of anisotropy

As described above, the preprocessed 3-dimensional MR volumes
of all MS patients and healthy controls were independently wavelet
transformed into a set of volumes at 6 different scales. Each set of vol-
umes consists of 28 orientation subbands isolating certain directions
in the data. Each voxel within the orientation subbands is described
by the local magnitude value of the wavelet transform. The global
analysis of anisotropy now measures variability throughout the
brain reflecting potential pathological processes that increase vari-
ability in tissue intensity over the whole-brain, e.g. lesions or atrophy.
Here, the variability depends on the scale and orientation the data is
looked at, but not on the location of a particular tissue alteration.

Specifically, we calculated for each subject the energy contained in
each orientation subband across all positions (resulting in 28 values
per scale and subject, thus 6 (scales)∗28 (subbands)=168 values
per subject; Fig. 1). Here, energy is defined as the variance of the
wavelet transformed MR volumes, decomposed into contributions
from different scales and orientations (Selesnick et al., 2005). For
each scale separately, the log-energy across subbands (eS1,…,eS28, S
scale) was used to define feature vectors describing the individual
pattern of global directionality. Each value within the feature vector
reflects the individual log-energy at a specific combination of scale
and orientation (eIV1, for example, reflects the log-energy contained
in orientation subband 1 of scale IV). Please note that local and thus
positional information is lost since we calculated the energy over all
magnitude values within the single orientation subbands, so we get
one value per orientation subband and subject.

These features were then used by a linear support vector machine
(SVM; Cortes and Vapnik, 1995; Shawe-Taylor and Christianini, 2000;
Fig. 3) to classify between MS patients and healthy controls. Recently,
SVMs have been successfully applied in the field of clinical neuroimag-
ing in order to differentiate two clinical groups (Fu et al., 2008; Klöppel
et al., 2008b; Koutsouleris et al., 2009). For an introduction into SVMs,
see Burges (1998) or Schölkopf and Smola (2002). Although non-
linear kernels are often associated with an improvement in accuracy,
we decided here to use a linear SVM since linear classification algo-
rithms have been shown to be most successful in neuroimaging (Mur
et al., 2009).Moreover, results obtained froma linear classification algo-
rithmhave a clearer andmore intuitive interpretation. Nevertheless, re-
sults for the naive Bayes classifier and non-linear SVMs are provided in
Supplementary Tables 2–4. To perform the classification analyses, we
used the LIBSVM toolbox for MATLAB (Chang and Lin, 2011; http://
www.csie.ntu.edu.tw/~cjlin/libsvm/) with a cost parameter of C=1
(default value). For each set of wavelet coefficients (obtained from ei-
ther total brain matter, lesion matter or NABT), we conducted a total
of 7 classification analyses, one for each scale and one using the features
of all scales together. Please note that we were mostly interested in the
significance of different scales in decodingMS rather than assessing the
performance using the information of all scales together. Therefore, we
decided to carry out independent classification analyses for each scale
using only the information of this particular scale instead of considering
the weight distribution over all scales.

To assess the generalizability of performance using an indepen-
dent data set, we performed a leave-one-out cross-validation. This
means that the feature vectors of all but one subject were used as
‘training data’. Based on this training data, the SVM learns a linear
function of feature vectors that discriminates between members of
two different classes (MS vs. non-MS). This decision function is then
tested on the remaining, independent ‘test’ subject. This procedure
was repeated so that each subject was the test subject once. The
decoding accuracy is then given by the mean of sensitivity and spec-
ificity, where sensitivity (specificity) is defined as the percentage of
correctly classified MS patients (healthy controls). A high decoding
accuracy implies that the pattern of global directionality spatially en-
codes information about disease status. Corresponding p-values were
calculated using the Pearson's χ2 test, which tests the null hypothesis
of independence between predicted and true class labels.

Local analysis of anisotropy

For the local analysis of anisotropy, the preprocessed 3-dimensional
MR volumes of allMSpatients andhealthy controlswere independently
wavelet transformed into a set of 28 orientation subbands at 6 different
scales containing the magnitude values for each voxel position. This has
been done in the same way as for the global analysis of anisotropy.
Please recall that voxel refers to ‘volume element’ and that the size de-
pends on the scale. In contrast to the global analysis of anisotropy, we
focusedhere on particular positionswithin the brain to allow forfinding
location-specific alterations in the brain, e.g. subtle tissue alterations at
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a particular position that are inmost patients present, but not in healthy
controls.

Specifically, we used the voxel-wise magnitude values instead of a
global variance marker for discriminating between MS patients and
healthy controls. Thus, we extracted the magnitude value at the
same location (i.e. same voxel position) across all 28 subbands for
one particular scale (Fig. 1). The feature vectors therefore depend
not only on scale but also on the voxel position (eS1i,…,eS28i, S scale,
voxel i) and can be interpreted as the ‘signal energy’ contained in a
specific combination of scale, orientation and location (Selesnick et
al., 2005). This means that our algorithm searches across the sub-
bands at one particular scale for local directionality patterns informa-
tive about the clinical status

Based on the feature vectors, we conducted again a linear SVM to
classify between MS patients and healthy controls (Fig. 3). As above,
results were validated using a leave-one-out cross-validation and
corresponding p-values were calculated using the Pearson's χ2 test,
which tests the null hypothesis of independence between predicted
and true class labels. Please note that the number of voxels and thus
the number of classification analyses varied between the three brain
matter types and the different scales (i.e. up to 643 analyses for
scale I, up to 323 analyses for scale II and so on). Voxels having zero
magnitude were excluded. The high number of classification analyses
makes it necessary to correct for multiple comparisons, a statistical
problem originating from the fact that if a statistical test is often repeat-
ed, it is likely to observe some false positives. To account for the multi-
ple comparison problem in this study, we report only voxel coordinates
that exhibit a significant decoding accuracy on a Bonferroni-corrected
level of pb0.05, which means that the significance level of 0.05 was di-
vided by the number of classification analyses for either total brainmat-
ter, lesion matter or NABT. For example, only voxel coordinates with
Fig. 4. Results of the global analysis of anisotropy. In (A) the difference of mean feature vec
shown for total brain matter, lesion matter and normal-appearing brain matter (NABT), resp
Sensitivity, specificity and decoding accuracy of corresponding classification analyses are giv
accuracies are marked by one or two stars (*: pb0.05; **: pb0.001).
pb0.05/57508 (equivalent to pb0.05, Bonferroni corrected) are
reported for brain matter. This rather conservative threshold was cho-
sen to increase the specificity of the analyses. Other correctionmethods
commonly used in the neuroimaging literature are false discovery rate
control, family wise error correction and permutation testing (Nichols
andHayasaka, 2003). By not reducing the search space prior to the anal-
ysis, this approach allows for an unbiased whole-brain information
mapping.

Results

Global analysis of anisotropy

For the global analysis of anisotropy, the difference between mean
feature vectors of MS patients and healthy controls, respectively, is
plotted in Fig. 4A, separately for total brain matter, lesion matter
and NABT. Interestingly, their difference varied with respect to scale
and orientation. For most subbands and especially for total brain mat-
ter and lesion matter, the MS patients tend to have higher energy
values. Geometrically, this means that the MR volumes of the patients
are characterized by more variability or ‘roughness’ (e.g. caused by
the hyperintensity of lesions) than the MR volumes of the controls.
For NABT, however, also some negative peaks, where MS patients
have lower energy values, could be identified. As expected, the differ-
ences were most apparent for lesion matter. Correspondingly,
decoding accuracies were largest for lesion matter and varied here
between 81.85% and 97.56% with a peak in scale II. For total brain
matter, decoding accuracies ranged from 75.56% to 83.07% with a
peak in scale III. The differences between the scales were not as strong
as for the lesion matter, though. For NABT, the decoding accuracies
were smaller, but still significant for scales I, III, IV, V and all scales
tors between MS patients and healthy controls (red) and the standard error (black) is
ectively. For each scale, the difference of mean log-energy of all 28 subbands is shown.
en in (B), separately for each scale and once for all scales together. Significant decoding
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Table 1
Results of the global analysis of anisotropy.

Sensitivity (%) Specificity (%) Accuracy (%) p-value

Scale I
Brain matter 87.80 73.08 80.44 b10−6

Lesions only 90.24 92.31 91.28 b10−10

NABT only 78.05 53.85 65.95 0.0074

Scale II
Brain matter 87.80 73.08 80.44 b10−6

Lesions only 95.12 100.00 97.56 b10−13

NABT only 63.41 30.77 47.09 0.6251

Scale III
Brain matter 85.37 80.77 83.07 b10−7

Lesions only 82.93 80.77 81.85 b10−6

NABT only 65.85 61.54 63.70 0.0280

Scale IV
Brain matter 82.93 80.77 81.85 b10−6

Lesions only 87.80 88.46 88.13 b10−9

NABT only 80.49 57.69 69.09 0.0013

Scale V
Brain matter 87.80 76.92 82.36 b10−7

Lesions only 95.12 88.46 91.79 b10−11

NABT only 70.73 57.69 64.21 0.0208

Scale VI
Brain matter 78.05 73.08 75.56 b10−4

Lesions only 90.24 92.31 91.28 b10−10

NABT only 73.17 50.00 61.59 0.0539

All scales
Brain matter 82.93 73.08 78.00 b10−5

Lesions only 92.68 96.15 94.42 b10−12

NABT only 78.05 61.54 69.79 0.0011

NABT, normal-appearing brain tissue. Accuracy is defined as the mean of sensitivity
and specificity. Corresponding p-values are calculated using the Pearson's χ2 test,
which tests the null hypothesis of independence between true and predicted class
labels.
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together. Here, accuracies varied between 47.09% and 69.79% and
were largest for scale IV and all scales together. Decoding results in-
cluding sensitivity, specificity and decoding accuracy are shown in
Fig. 4B; corresponding p-values are additionally listed in Table 1.
When using the naïve Bayes classifier or non-linear SVMs for classifi-
cation between MS patients and controls, the decoding results are
predominantly worse (Supplementary Tables 2–4), but still signifi-
cant for total brain matter and lesion matter. This suggests that the
classifier uses information from the interaction of different features. Sim-
ilarly, classification results based on individual log-energy values
extracted from spatial normalized MR images without performing a
wavelet transform beforehand are inferior to results based on the log-
energy extracted fromwavelet-transformedMR images (Supplementary
Table 5). To address the question whether classification depends on le-
sion load, we performed a correlation analysis between classifier perfor-
mance given by individual decision values and lesion load. This analysis
revealed that formost scaleswithin the different brainmatter types, clas-
sifier performance and lesion load were uncorrelated (Supplementary
Table 6).
Local analysis of anisotropy

For the local analysis of anisotropy, significant voxels have been
found for all three brain matter types and are shown in Fig. 5. In ac-
cordance with the global analysis, lesion matter was best in discrim-
inating between MS patients and healthy controls. In particular,
most significant voxels were detected for lesion matter (n=522) as
compared to total brain matter (n=116) and NABT (n=92) respec-
tively. Similarly, maximal decoding accuracy was higher for lesion
matter (98.78%) than for total brain matter (93.20%) and NABT
(92.50%).

As for the global analysis, the performance of classification analy-
ses differed not only between brain matter types, but also for the dif-
ferent scales. For total brain matter, most significant voxels have been
found in scales I, II and IV. In comparison, for lesion matter most sig-
nificant voxels were found for scales III and IV, whereas scales I and II
provided most significant voxels for NABT. Please refer to Table 2 for
the number of significant voxels since Fig. 5 reflects only a small por-
tion of significant voxels for the low scales.

Interestingly, the proportion of significant voxels steadily in-
creased with scale number, at least for total brain matter and lesion
matter. For brain matter, the proportion increased from 0.08% in
scale I up to 37.50% in scale VI, whereas for lesion matter even the
maximum of 100% was reached for scale VI. For NABT, the proportion
increased within scales I and II, dropped at scale III and then again in-
creased. For scale V, a peak of 1.56% was achieved. Please note that for
scales IV, V and VI only one or zero significant voxels have been found
in the case of NABT. See Table 2 for details.

The general trend to more significant voxels with increasing scale
number is also reflected in the histogram of all decoding accuracies
(Fig. 6). For higher scales, the whole histogram was shifted to the
right and thus contained higher decoding accuracies. For NABT, how-
ever, this effect was not as strong as for total brain matter and lesion
matter.

Discussion

In the present study, we introduced a novel approach to analyze
the patterning of structural MR images at different scales, and its im-
portance for disease classification. In particular, features comprising
global or local patterns of directionality at a given scale were shown
to discriminate above chance between MS patients and healthy con-
trols. It turned out that scales containing low frequency information
were partly superior to scales containing high frequency information.

Two analyses were conducted to investigate the significance of
different scales in distinguishing between MS patients and healthy
controls. In the global analysis of anisotropy, we have found that
even global markers of directionality contain disease-relevant infor-
mation and allow for significant decoding accuracies with up to
83.07% (scale III) in brain matter, 97.56% (scale II) in lesion matter
and 69.79% (all scales together) in normal-appearing brain tissue
(NABT). A correlation analysis between classifier performance and le-
sion load revealed that lesion load was of minor importance for dis-
criminating MS patients and healthy controls. Therefore, the higher
variability in MR images of MS patients cannot only rely on the exis-
tence of lesions and might be caused by subtle tissue alterations as for
example given by atrophy or diffuse white matter abnormalities (i.e.
dirty-appearing white matter or micro-lesions, which are too small
to be recognized as lesions by a clinician). To the best of our knowl-
edge, this is the first study using global information (covering the
whole scope of the brain) for diagnosing MS. In a previous study of
our group (Weygandt et al., 2011), we focused on disease-relevant in-
formation contained in local spherical patterns (i.e. searchlights)
extracted from the MR volumes and therefore we got as many diag-
noses as local patterns were investigated. Most other studies focused
on the discrimination between lesion areas and normal-appearing
white matter (Loizou et al., 2011; Zhang et al., 2008).

In the local analysis of anisotropy, we additionally included local
information to obtain a mapping of relevant regions. For single
voxel positions, we obtained very high accuracies, not only for brain
matter (93.20%) and lesion matter (98.78%), but also for NABT
(92.50%). For all three brain matter types, a high number of voxels
discriminating significantly between MS patients and healthy



Fig. 5. Results of the local analysis of anisotropy I. Significant voxels (red) are overlaid on a single subject's wavelet decomposition. As described in the Materials and methods sec-
tion, the wavelet decomposition was done separately for total brain matter, lesion matter and normal-appearing brain matter (NABT). Please note that the wavelet coefficients are
not necessarily zero ‘outside’ the brain structure and thus allow for significant decoding accuracies there. This is caused by a general “smearing” (reduced spatial resolution,
depending on scale) implicit in the wavelet decomposition. Based on the upsampled single subject's wavelet decomposition and the upsampled decoding accuracy map (new
size: 128×128×128), two slices were selected in the same way for all scales and the three brain matter types (slice numbers 52 and 68). However, please note that with increasing
scale the number of equal upsampled slices increases (e.g. for scale VI slices from 1 to 64 and slices from 65 to 128 are equal). Please also reconsider that the number of significant
voxels indicated in red do not reflect the total number of significant voxels (e.g. for scale I 62 more slices exist with potentially significant voxels). For the exact numbers please refer
to Table 2.
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controls have been found (116 for total brain matter, 522 for lesion
matter and 92 for NABT). Interestingly, the amount of disease-
relevant information increased with scale which demonstrates a
major importance of low frequency information in decoding MS. A
similar result has been found by Zhang et al. (2009). By using the
Stockwell transform, they have shown that low frequency informa-
tion can be a useful means to quantify lesion injury and recovery in
MS. In an animal model of MS, Zhang et al. (2006) have additionally
shown that frequency information can be directly related to histo-
pathological changes in lesions.

As expected, classifier performance was best for lesion matter, for
both global and local analyses of anisotropy. Radiologically, focal in-
flammatory lesions are the main characteristic of MS pathology
(Filippi and Rocca, 2005) and thus a major involvement of lesions in
discriminating MS patients and healthy controls was expected. How-
ever, please reconsider that only 6.83% of lesion matter voxels in the
lesion mask were actually lesioned, since a voxel was included if it
was lesioned in anyone patient's brain. Thus, the classifier perfor-
mance cannot rely on the presence of lesions alone. We hypothesize
that the classifier used slight intensity changes due to so-called
dirty-appearing white matter, whose importance has recently been
highlighted (Filippi and Rocca, 2010; Ge et al., 2003; Vrenken et al.,
2010).

When the classification exclusively relied on NABT, we still
obtained very high decoding accuracies for the local analysis. This is
in accordance with two earlier studies of our group, which were
based on the same data and stated that NABT in conventional MRI
contains substantial disease-relevant information (Hackmack et al.,
2012; Weygandt et al., 2011). This is in contrast to the traditional dis-
regardment of the information value of NABT based on conventional
MRI (Filippi and Rocca, 2005).

In the last years, much effort has been put into finding structural
differences in MRI scans between patients suffering from a neurolog-
ical or psychiatric disease and healthy controls. Features described in
the literature include for example intensity values (Weygandt et al.,
2011), grey matter density (Davatzikos et al., 2008; Draganski et al.,
2010; Klöppel et al., 2008b, 2009; Koutsouleris et al., 2009), cortical
thickness (Du et al., 2007; Oliveira et al., 2010; Sailer et al., 2003;
Sowell et al., 2008; Worbe et al., 2010), and cortical gyrification
(Ecker et al., 2010; Yotter et al., 2011). Studies using these features
mostly differed with respect to the spatial extent of the features. Gen-
erally, one can distinguish between voxel-wise analysis, regions-of-
interest (ROI) analysis and whole-brain analysis. Conventionally,
brain maps have been compared on a voxel-by-voxel basis such as
in voxel-based morphometry or in most functional MRI studies
(Ashburner and Friston, 2000; Morgen et al., 2007; Pujol et al.,
2004). However, techniques using multivariate information have
been demonstrated to be more sensitive than univariate methods in
detecting different mental states or diseases (Ashburner and
Klöppel, 2011; Haynes and Rees, 2006). Whereas studies using the
whole-brain pattern of features are most suitable for diseases affect-
ing the central nervous system globally such as Alzheimer's disease,
ROI analyses are more appropriate for locally acting diseases. In the
standard ROI analysis, one or several ROIs are defined in advance
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Table 2
Results of the local analysis of anisotropy.

Max. accuracy (%) P-value Bonf. sign. voxel (#) Proportion (%)

Scale I
Brain matter 91.79 b10−11 36 0.08
Lesions only 91.98 b10−10 52 0.21
NABT only 86.21 b10−8 53 0.12

Scale II
Brain matter 88.65 b10−9 25 0.23
Lesions only 93.20 b10−11 64 0.77
NABT only 92.50 b10−11 32 0.29

Scale III
Brain matter 93.20 b10−11 16 0.46
Lesions only 96.34 b10−13 138 4.42
NABT only 82.55 b10−6 5 0.14

Scale IV
Brain matter 91.28 b10−10 24 4.69
Lesions only 96.86 b10−13 203 39.65
NABT only 81.14 b10−6 1 0.20

Scale V
Brain matter 87.43 b10−9 12 18.75
Lesions only 98.78 b10−14 57 89.06
NABT only 80.44 b10−6 1 1.56

Scale VI
Brain matter 90.57 b10−10 3 37.50
Lesions only 91.28 b10−10 8 100.00
NABT only – – 0 0.00

For each scale, peak decoding accuracy and corresponding p-value of Bonferroni-
significant voxels are listed separately for total brain matter, lesion matter and
normal-appearing brain tissue (NABT). P-values are calculated using the Pearson's χ2

test. Additionally, the total number of Bonferroni-significant voxels and the proportion
of Bonferroni-significant voxels with respect to all voxels in the particular analysis are
shown.
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and thus this type of analysis depends on a priori hypotheses about
disease-underlying structures. However, this limitation can be over-
come by using a so-called searchlight approach (Haynes et al., 2007;
Kriegeskorte et al., 2006) which searches across the whole volume
for local patterns informative about the disease status (Hackmack et
al., 2012; Weygandt et al., 2011). Voxel-wise analysis and ROI analy-
sis, however, have the disadvantage to neglect connectivity patterns
or interrelations that might exist among measurements of distinct
voxels or brain regions, which have been shown to be relevant for dis-
ease classification in some cases (Bassett et al., 2008; He et al., 2008;
Raj et al., 2010). Another major drawback of all three types of analy-
ses is that they are biased to specific scales, namely the sampling rate
of the data, and therefore disregard potential sources of variability in
patients given by different scales.

By using wavelets to extract information on different spatial
scales, we overcome this limitation and allow for a scale-dependent
analysis. The major benefit of using the dual-tree complex wavelet
transform for calculating the wavelet coefficients is its additional ori-
entation selectivity. By this, we introduced a new representation of
brain structure by defining features as a function of scale, orientation
and location. In our analyses, we covered scales ranging from [4 mm]3

in scale I to [128 mm]3 in scale VI. Within each scale, data of 28 orien-
tation subbands containing a varying number of locations (from 643

in scale I to 23 in scale VI) were extracted. We are not aware of any
other clinical study using this rich source of information as a basis
for disease classification.

Nevertheless, wavelets have advanced to a popular and powerful
instrument to analyze biomedical or neuroimaging data (Akay,
1997; Bullmore et al., 2004; Laine, 2000; Sajda et al., 2002; Unser
and Aldroubi, 1996; Van De Ville et al., 2006). For functional MRI,
main applications include spatiotemporal resampling as a non-
parametric test of functional connectivity (Breakspear et al., 2004;
Bullmore et al., 2004), time-series modeling in the wavelet domain
(Maxim et al., 2005), inter-subject registration (Suckling et al.,
2006) and multiresolution hypothesis testing (Fadili and Bullmore,
2004; Van De Ville et al., 2006). In structural MRI, wavelets have
mostly been used to characterize texture in normal and abnormal tis-
sue such as temporal lobes affected by epilepsy (Jafari-Khouzani et al.,
2010), brain tumors (Sasikala and Kumaravel, 2008) or MS lesions
(Harrison et al., 2010; Zhang et al., 2008, 2009). For reviews of texture
analysis based on medical images, see Castellano et al. (2004),
Kassner and Thornhill (2010) or Sajda et al. (2002). Additionally,
wavelets have been used for image denoising (Laine, 2000), tissue
segmentation (Barra and Boire, 2000), image registration (Dinov et
al., 2002) or feature reduction (Lao et al., 2004). To the best of our
knowledge, there is only one other study which used a combination
of wavelets and SVMs for the purpose of diagnosing a disease:
based on 2-dimensional MR images, Chaplot et al. (2006) used direct-
ly the wavelet coefficients of a particular scale as input to a SVM in
order to classify between patients suffering from Alzheimer's disease
and healthy controls.

A limitation of the present study is the missing link to the histopa-
thology accounting for high decoding accuracies. Since TIRM images
are relatively unspecific with respect to underlying MS pathology
(Neema et al., 2007), analyzing possible pathomechanisms would re-
quire either histological data (e.g. from post-mortem brains) or ad-
vanced imaging data such as diffusion or magnetization transfer
imaging data. In particular, the interpretation of directional informa-
tion is challenging. Further studies are necessary to correlate histo-
pathological findings or findings of non-conventional MRI with
decoding accuracy as a function of scale, orientation and eventually
location.

Conclusions

In conclusion, based on a combination of wavelets and pattern
recognition methods, we identified a new class of features taking si-
multaneously scale and directionality information into account.
These features were shown to contain substantial disease-relevant in-
formation for decoding MS and thus can be considered as ‘disease sig-
natures’. Since MRI interpretation is highly variable when relying on
visual perception (Kassner and Thornhill, 2010; Klöppel et al.,
2008a), diagnoses based on computerized techniques have the poten-
tial to be more reliable than diagnoses made by clinicians who might
have different levels of training. Therefore, we think that our pro-
posed features have a high potential to assist in the diagnostic process
complementing macrotexture information already used by neurora-
diologists. However, our approach is not limited to clinical applica-
tions in structural MRI, but might be also interesting for functional
MRI studies investigating cognitive functions in healthy or diseased
subjects.
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Fig. 6. Results of the local analysis of anisotropy II. Here, we show the relative distribution of scale-dependent decoding accuracies, separately for total brain matter, lesion matter
and normal-appearing brain tissue (NABT). For each scale, the decoding accuracies were grouped into 10 equally spaced bins and corresponding frequencies were divided by the
total number of classification analyses per scale.
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